The kNN-TD Reinforcement Learning Algorithm

نویسندگان

  • José Antonio Martín H.
  • Javier de Lope Asiaín
  • Darío Maravall Gómez-Allende
چکیده

A reinforcement learning algorithm called kNN-TD is introduced. This algorithm has been developed using the classical formulation of temporal difference methods and a k-nearest neighbors scheme as its expectations memory. By means of this kind of memory the algorithm is able to generalize properly over continuous state spaces and also take benefits from collective action selection and learning processes. Furthermore, with the addition of probability traces, we obtain the kNN-TD(λ) algorithm which exhibits a state of the art performance. Finally the proposed algorithm has been tested on a series of well known reinforcement learning problems and also at the Second Annual RL Competition with excellent results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement learning with kernels and Gaussian processes

Kernel methods have become popular in many sub-fields of machine learning with the exception of reinforcement learning; they facilitate rich representations, and enable machine learning techniques to work in diverse input spaces. We describe a principled approach to the policy evaluation problem of reinforcement learning. We present a temporal difference (TD) learning using kernel functions. Ou...

متن کامل

L1 Regularized Linear Temporal Difference Learning

Several recent efforts in the field of reinforcement learning have focused attention on the importance of regularization, but the techniques for incorporating regularization into reinforcement learning algorithms, and the effects of these changes upon the convergence of these algorithms, are ongoing areas of research. In particular, little has been written about the use of regularization in onl...

متن کامل

Double Q($\sigma$) and Q($\sigma, \lambda$): Unifying Reinforcement Learning Control Algorithms

Temporal-difference (TD) learning is an important field in reinforcement learning. Sarsa and Q-Learning are among the most used TD algorithms. The Q(σ) algorithm (Sutton and Barto (2017)) unifies both. This paper extends the Q(σ) algorithm to an online multi-step algorithm Q(σ, λ) using eligibility traces and introduces Double Q(σ) as the extension of Q(σ) to double learning. Experiments sugges...

متن کامل

Kernel Least-Squares Temporal Difference Learning

Kernel methods have attracted many research interests recently since by utilizing Mercer kernels, non-linear and non-parametric versions of conventional supervised or unsupervised learning algorithms can be implemented and usually better generalization abilities can be obtained. However, kernel methods in reinforcement learning have not been popularly studied in the literature. In this paper, w...

متن کامل

Study of Different Multi-instance Learning kNN Algorithms

Because of it is applicability in various field, multi-instance learning or multi-instance problem becoming more popular in machine learning research field. Different from supervised learning, multi-instance learning related to the problem of classifying an unknown bag into positive or negative label such that labels of instances of bags are ambiguous. This paper uses and study three different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009